Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
2.
J Neuroinflammation ; 18(1): 312, 2021 Dec 31.
Article in English | MEDLINE | ID: mdl-34972522

ABSTRACT

BACKGROUND: Tumor necrosis factor-α (TNF-α) plays a central role in Alzheimer's disease (AD) pathology, making biologic TNF-α inhibitors (TNFIs), including etanercept, viable therapeutics for AD. The protective effects of biologic TNFIs on AD hallmark pathology (Aß deposition and tau pathology) have been demonstrated. However, the effects of biologic TNFIs on Aß-independent tau pathology have not been reported. Existing biologic TNFIs do not cross the blood-brain barrier (BBB), therefore we engineered a BBB-penetrating biologic TNFI by fusing the extracellular domain of the type-II human TNF-α receptor (TNFR) to a transferrin receptor antibody (TfRMAb) that ferries the TNFR into the brain via receptor-mediated transcytosis. The present study aimed to investigate the effects of TfRMAb-TNFR (BBB-penetrating TNFI) and etanercept (non-BBB-penetrating TNFI) in the PS19 transgenic mouse model of tauopathy. METHODS: Six-month-old male and female PS19 mice were injected intraperitoneally with saline (n = 12), TfRMAb-TNFR (1.75 mg/kg, n = 10) or etanercept (0.875 mg/kg, equimolar dose of TNFR, n = 10) 3 days/week for 8 weeks. Age-matched littermate wild-type mice served as additional controls. Blood was collected at baseline and 8 weeks for a complete blood count. Locomotion hyperactivity was assessed by the open-field paradigm. Brains were examined for phosphorylated tau lesions (Ser202, Thr205), microgliosis, and neuronal health. The plasma pharmacokinetics were evaluated following a single intraperitoneal injection of 0.875 mg/kg etanercept or 1.75 mg/kg TfRMAb-TNFR or 1.75 mg/kg chronic TfRMAb-TNFR dosing for 4 weeks. RESULTS: Etanercept significantly reduced phosphorylated tau and microgliosis in the PS19 mouse brains of both sexes, while TfRMAb-TNFR significantly reduced these parameters in the female PS19 mice. Both TfRMAb-TNFR and etanercept treatment improved neuronal health by significantly increasing PSD95 expression and attenuating hippocampal neuron loss in the PS19 mice. The locomotion hyperactivity in the male PS19 mice was suppressed by chronic etanercept treatment. Equimolar dosing resulted in eightfold lower plasma exposure of the TfRMAb-TNFR compared with etanercept. The hematological profiles remained largely stable following chronic biologic TNFI dosing except for a significant increase in platelets with etanercept. CONCLUSION: Both TfRMAb-TNFR (BBB-penetrating) and non-BBB-penetrating (etanercept) biologic TNFIs showed therapeutic effects in the PS19 mouse model of tauopathy.


Subject(s)
Gliosis/prevention & control , Neurons/pathology , Tauopathies/pathology , Tumor Necrosis Factor-alpha/antagonists & inhibitors , tau Proteins/antagonists & inhibitors , Animals , Disks Large Homolog 4 Protein/biosynthesis , Disks Large Homolog 4 Protein/genetics , Etanercept/pharmacokinetics , Etanercept/pharmacology , Female , Hippocampus/pathology , Humans , Hyperkinesis , Male , Mice , Mice, Transgenic , Phosphorylation , Receptors, Tumor Necrosis Factor/antagonists & inhibitors , Tauopathies/genetics , tau Proteins/genetics , tau Proteins/metabolism
3.
Front Cell Neurosci ; 13: 459, 2019.
Article in English | MEDLINE | ID: mdl-31680870

ABSTRACT

Secreted amyloid precursor protein-alpha (sAPPα), generated by enzymatic processing of the APP, possesses a range of neurotrophic and neuroprotective properties and plays a critical role in the molecular mechanisms of memory and learning. One of the key active regions of sAPPα is the central APP domain (E2) that contains within it the tripeptide sequence, RER. This sequence is exposed on the surface of a coiled coil substructure of E2. RER has by itself displayed memory-enhancing properties, and can protect newly formed engrams from interference in a manner similar to that displayed by sAPPα itself. In order to determine whether RER mimics other properties of sAPPα, we investigated the electrophysiological effects of the N-terminal protected acetylated RER (Ac-RER) and an isoform containing a chiral switch in the first amino acid from an l- to a d-orientation (Ac-rER), on synaptic plasticity. We found that, like sAPPα, exogenous perfusion with nanomolar concentrations of Ac-RER or Ac-rER enhanced the induction and stability of long-term potentiation (LTP) in area CA1 of rat and mouse hippocampal slices, in a protein synthesis- and trafficking-dependent manner. This effect did not occur with a control Ac-AAA or Ac-IFR tripeptide, nor with a full-length sAPPα protein where RER was substituted with AAA. Ac-rER also protected LTP against amyloid-beta (Aß25 - 35)-induced LTP impairment. Our findings provide further evidence that the RER-containing region of sAPPα is functionally significant and by itself can produce effects similar to those displayed by full length sAPPα, suggesting that this tripeptide, like sAPPα, may have therapeutic potential.

4.
J Neurosci ; 39(17): 3188-3203, 2019 04 24.
Article in English | MEDLINE | ID: mdl-30804097

ABSTRACT

Secreted amyloid precursor protein-alpha (sAPPα) has growth factor-like properties and can modulate long-term potentiation (LTP) and memory. Here, we demonstrate that exposure to sAPPα converts short-lasting LTP into protein-synthesis-dependent late LTP in hippocampal slices from male rats. sAPPß had no discernable effect. We hypothesized that sAPPα facilitated LTP via regulated glutamate receptor trafficking and de novo protein synthesis. We found using a linear mixed model that sAPPα stimulated trafficking of GluA2-lacking AMPARs, as well as NMDARs to the extrasynaptic cell surface, in a calcium/calmodulin-dependent kinase II and protein kinase G-dependent manner. Both cell surface receptor accumulation and LTP facilitation were present even after sAPPα washout and inhibition of receptor trafficking or protein synthesis prevented all these effects. Direct visualization of newly synthesized proteins (FUNCAT-PLA) confirmed the ability of sAPPα to stimulate de novo protein synthesis and revealed GluA1 as one of the upregulated proteins. Therefore, sAPPα generates a coordinated synthesis and trafficking of glutamate receptors to the cell surface that facilitate LTP.SIGNIFICANCE STATEMENT Secreted amyloid precursor protein-alpha (sAPPα) is a neurotrophic and neuroprotective protein that can promote synaptic plasticity and memory, yet the molecular mechanisms underlying these effects are still not well understood. Here, we show that sAPPα facilitates long-term potentiation (LTP) in a concentration-dependent fashion through cellular processes involving de novo protein synthesis and trafficking of both GluA2-lacking AMPARs and NMDARs to the extrasynaptic cell surface. sAPPα also enhances GluA1, but not GluA2, synthesis. The trafficking effects, along with the LTP facilitation, persist after sAPPα washout, revealing a metaplastic capability of exogenous sAPPα administration. sAPPα thus facilitates LTP through coordinated activation of protein synthesis and trafficking of glutamate receptors to the cell surface, where they are positioned for priming LTP.


Subject(s)
Amyloid beta-Protein Precursor/pharmacology , Hippocampus/physiology , Long-Term Potentiation/drug effects , Protein Biosynthesis/drug effects , Receptors, Glutamate/metabolism , Animals , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Cyclic GMP-Dependent Protein Kinases/metabolism , Hippocampus/drug effects , Long-Term Potentiation/physiology , Male , Protein Biosynthesis/physiology , Protein Transport/drug effects , Protein Transport/physiology , Rats , Rats, Sprague-Dawley
5.
Mol Brain ; 11(1): 7, 2018 02 09.
Article in English | MEDLINE | ID: mdl-29426354

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative disease driven in large part by accumulated deposits in the brain of the amyloid precursor protein (APP) cleavage product amyloid-ß peptide (Aß). However, AD is also characterised by reductions in secreted amyloid precursor protein-alpha (sAPPα), an alternative cleavage product of APP. In contrast to the neurotoxicity of accumulated Αß, sAPPα has many neuroprotective and neurotrophic properties. Increasing sAPPα levels has the potential to serve as a therapeutic treatment that mitigates the effects of Aß and rescue cognitive function. Here we tested the hypothesis that lentivirus-mediated expression of a human sAPPα construct in a mouse model of AD (APPswe/PS1dE9), begun before the onset of plaque pathology, could prevent later behavioural and electrophysiological deficits. Male mice were given bilateral intra-hippocampal injections at 4 months of age and tested 8-10 months later. Transgenic mice expressing sAPPα performed significantly better than untreated littermates in all aspects of the spatial water maze task. Expression of sAPPα also resulted in partial rescue of long-term potentiation (LTP), tested in vitro. These improvements occurred in the absence of changes in amyloid pathology. Supporting these findings on LTP, lentiviral-mediated expression of sAPPα for 3 months from 10 months of age, or acute sAPPα treatment in hippocampal slices from 18 to 20 months old transgenic mice, completely reversed the deficits in LTP. Together these findings suggest that sAPPα has wide potential to act as either a preventative or restorative therapeutic treatment in AD by mitigating the effects of Aß toxicity and enhancing cognitive reserve.


Subject(s)
Amyloid beta-Protein Precursor/metabolism , Amyloid beta-Protein Precursor/therapeutic use , Lentivirus/metabolism , Memory Disorders/drug therapy , Memory Disorders/physiopathology , Neuronal Plasticity , Peptide Fragments/metabolism , Peptide Fragments/therapeutic use , Amyloid/drug effects , Amyloid/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/administration & dosage , Amyloid beta-Protein Precursor/pharmacology , Animals , Behavior, Animal , Biomarkers/metabolism , Disease Models, Animal , Hippocampus/pathology , Hippocampus/physiopathology , Humans , Long-Term Potentiation/drug effects , Male , Maze Learning/drug effects , Memory Disorders/pathology , Mice, Inbred C57BL , Mice, Transgenic , Neuronal Plasticity/drug effects , Neurons/drug effects , Neurons/metabolism , Peptide Fragments/administration & dosage , Peptide Fragments/pharmacology , Plaque, Amyloid/pathology , Plaque, Amyloid/physiopathology , Synaptic Transmission/drug effects , Transduction, Genetic
6.
Fly (Austin) ; 7(4): 267-79, 2013.
Article in English | MEDLINE | ID: mdl-24091420

ABSTRACT

Infantile-onset neuronal ceroid lipofuscinosis (INCL) is a severe pediatric neurodegenerative disorder produced by mutations in the gene encoding palmitoyl-protein thioesterase 1 (Ppt1). This enzyme is responsible for the removal of a palmitate group from its substrate proteins, which may include presynaptic proteins like SNAP-25, cysteine string protein (CSP), dynamin, and synaptotagmin. The fruit fly, Drosophila melanogaster, has been a powerful model system for studying the functions of these proteins and the molecular basis of neurological disorders like the NCLs. Genetic modifier screens and tracer uptake studies in Ppt1 mutant larval garland cells have suggested that Ppt1 plays a role in endocytic trafficking. We have extended this analysis to examine the involvement of Ppt1 in synaptic function at the Drosophila larval neuromuscular junction (NMJ). Mutations in Ppt1 genetically interact with temperature sensitive mutations in the Drosophila dynamin gene shibire, accelerating the paralytic behavior of shibire mutants at 27 °C. Electrophysiological work in NMJs of Ppt1-deficient larvae has revealed an increase in miniature excitatory junctional potentials (EJPs) and a significant depression of evoked EJPs in response to repetitive (10 hz) stimulation. Endocytosis was further examined in Ppt1-mutant larvae using FM1-43 uptake assays, demonstrating a significant decrease in FM1-43 uptake at the mutant NMJs. Finally, Ppt1-deficient and Ppt1 point mutant larvae display defects in locomotion that are consistent with alterations in synaptic function. Taken together, our genetic, cellular, and electrophysiological analyses suggest a direct role for Ppt1 in synaptic vesicle exo- and endocytosis at motor nerve terminals of the Drosophila NMJ.


Subject(s)
Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Endocytosis/genetics , Exocytosis/genetics , Membrane Proteins/genetics , Animals , Drosophila Proteins/metabolism , Drosophila Proteins/physiology , Drosophila melanogaster/cytology , Drosophila melanogaster/physiology , Larva/cytology , Larva/genetics , Larva/metabolism , Locomotion/genetics , Membrane Proteins/metabolism , Membrane Proteins/physiology , Mutation , Neuromuscular Junction/growth & development , Neuromuscular Junction/metabolism , Synapses/metabolism , Synapses/physiology , Thiolester Hydrolases
7.
J Insect Physiol ; 56(3): 304-13, 2010 Mar.
Article in English | MEDLINE | ID: mdl-19913024

ABSTRACT

The resting membrane potential (RMP) of most cells is not greatly influenced by the transmembrane calcium gradient because at rest, the membrane has very low permeability to calcium. We have observed, however, that the resting membrane potential of muscle cells in the larval bodywall of Drosophila melanogaster varies widely as the external calcium concentration is modified. The RMP depolarized as much as 21.8 mV/mM calcium at low concentrations, and on average, about 10 mV/mM across a range typical of neurophysiological investigations. The extent to which muscle RMP varies has important implications for the measurement of synaptic potentials as well. Two parameters of excitatory junctional potential (EJP) voltage were compared across a range of RMPs. EJP amplitude (DeltaV) and peak voltage (maxima) change as a function of RMP; on average, a 10 mV change in RMP elicits a 4-5 mV change in EJP amplitude and peak voltage. The influence of the calcium gradient on resting and synaptic membrane potentials led us to investigate the endogenous ion concentrations of larval hemolymph. In addition to the major monovalent ions and calcium, we report the first voltammetric analysis of magnesium concentration in larval fruit fly hemolymph.


Subject(s)
Calcium/metabolism , Drosophila melanogaster/physiology , Membrane Potentials , Animals , Drosophila melanogaster/chemistry , Drosophila melanogaster/growth & development , Electrophysiology , Hemolymph/chemistry , Hemolymph/metabolism , Larva/chemistry , Larva/growth & development , Larva/physiology , Muscles/chemistry , Muscles/metabolism
8.
Ann N Y Acad Sci ; 1097: 58-63, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17413011

ABSTRACT

Progressive memory loss and deposition of amyloid beta (Abeta) peptides throughout cortical regions are hallmarks of Alzheimer's disease (AD). Several studies in mice and rats have shown that overexpression of amyloid precursor protein (APP) or pretreatment with Abeta peptide fragments results in the inhibition of hippocampal long-term potentiation (LTP) as well as impairments in learning and memory of hippocampal-dependent tasks. For these studies we have investigated the effects of the Abeta(25-35) peptide fragment on LTP induced by adenylate cyclase stimulation followed immediately by application of Mg(++)-free aCSF ("chemLTP"). Treatment of young adult slices with the Abeta(25-35) peptide had no significant effect on basal synaptic transmission in area CA1, but treatment with the peptide for 20 min before inducing chemLTP with isoproterenol (ISO; 1 microM) or forskolin (FSK;10 microM) + Mg(++)-free aCSF resulted in complete blockade of LTP. In contrast, normal ISO-chemLTP was observed after treatment with the control peptide Abeta(35-25). The ability of the Abeta(25-35) peptide fragment to block this and other forms of synaptic plasticity may help elucidate the mechanisms underlying hippocampal deficits observed in animal models of AD and/or AD individuals.


Subject(s)
Adenylyl Cyclase Inhibitors , Alzheimer Disease/metabolism , Amyloid beta-Peptides/pharmacology , Enzyme Inhibitors , Hippocampus/drug effects , Hippocampus/enzymology , Long-Term Potentiation/physiology , Peptide Fragments/pharmacology , Adrenergic beta-Agonists/pharmacology , Animals , Colforsin/pharmacology , Excitatory Postsynaptic Potentials/drug effects , Hippocampus/physiology , Isoproterenol/pharmacology , Magnesium/physiology , Male , Rats , Rats, Inbred F344 , Synapses/drug effects , Synapses/physiology , Synaptic Transmission/drug effects
9.
J Neurophysiol ; 93(6): 3381-9, 2005 Jun.
Article in English | MEDLINE | ID: mdl-15911893

ABSTRACT

Beta-adrenergic receptors and the cyclic AMP signaling pathway play an important role in neuronal plasticity and in learning and memory and are known to change with aging. We examined the effects of beta-adrenergic stimulation paired with 5-Hz low frequency stimulation (LFS) of Schaffer collateral-commissural afferents on population spike amplitude in area CA1 of hippocampal slices from young (3 mo) and aged (22 mo) Fischer 344 rats. Application of the beta-adrenergic agonist isoproterenol (1 microM) for 10 min followed immediately by 3 min LFS produced long-lasting potentiation in young hippocampi, but the magnitude of potentiation in aged rats was significantly attenuated and was not long-lasting. In slices prepared from young rats, long-term potentiation (LTP) induced by this protocol occludes subsequent attempts to produce conventional high frequency stimulation-induced LTP, and vice versa, suggesting that these two forms of potentiation share one or more molecular mechanisms. Age-related differences in response to LFS alone were not observed, but significant differences in response to beta-adrenergic stimulation were apparent. Similarly, significant age-related differences in response to direct activation of adenylate cyclase with forskolin (10 microM) were observed. In both age groups, this enhancement produced by isoproterenol or forskolin is only transient, returning to baseline within 60 or 90 min, respectively. Taken together, these studies of adenylate cyclase-mediated forms of potentiation in area CA1 suggest that there is an age-related defect, either upstream or downstream of adenylate cyclase activation, in this important signaling system. Such changes may contribute to the compromised performance on memory tasks that is often observed with normal aging.


Subject(s)
Adenylyl Cyclases/metabolism , Aging/physiology , Hippocampus/cytology , Neuronal Plasticity/physiology , Neurons/physiology , Adrenergic beta-Agonists/pharmacology , Age Factors , Analysis of Variance , Animals , Colforsin/pharmacology , Dose-Response Relationship, Drug , Dose-Response Relationship, Radiation , Electric Stimulation/methods , Enzyme Activation/drug effects , Hippocampus/growth & development , Isoproterenol/pharmacology , Long-Term Potentiation/drug effects , Long-Term Potentiation/physiology , Long-Term Potentiation/radiation effects , Male , Neuronal Plasticity/drug effects , Neurons/drug effects , Rats , Rats, Inbred F344 , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...